Improved Quasi-Steady-State-Approximation Methods for Atmospheric Chemistry Integration

نویسندگان

  • Laurent O. Jay
  • Adrian Sandu
  • Florian A. Potra
  • Gregory R. Carmichael
چکیده

In the last fifteen years the quasi-steady-state-approximation (QSSA) method has been a commonly used method for integrating stiff ordinary differential equations arising from atmospheric chemistry problems. In this paper a theoretical analysis of the QSSA method is developed, stressing its strengths and its weaknesses. This theory leads to practical improvements to the QSSA method. New algorithms, including symmetric and extrapolated QSSA are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eecient Numerical Integration for Atmospheric Chemistry

In the last fteen years the Quasi-Steady-State-Approximation (QSSA) method has been a commonly used method to integrate stii ordinary diierential equations arising from atmospheric chemistry problems. In this paper a theoretical analysis of the QSSA method is presented, stressing certain strengths and weaknesses. This theory leads to practical improvements to the QSSA method.

متن کامل

Extending the Quasi - Steady Approximation by Changing

The classical Michaelis-Menten approximation for scheme (la) is the archetypal example for the use of the quasi-steady state (QSS) approximation. This approximation is a major simplifying step throughout biology, with its enormous range of time scales, and indeed in many other branches of science. The quasi-steady state assumption (QSSA) often yields revealing analytic formulas and it frequentl...

متن کامل

Quasi–steady–state Approximation for Reaction–diffusion Equations

In this paper, we present a rigorous proof of the quasi– steady–state approximation (QSSA) used in chemistry, in two different settings: the first one corresponds to reaction–diffusion equations, while the second one is devoted to ODEs, with a particular attention to the effect of temperature.

متن کامل

A FAST MESH-FREE GALERKIN METHOD FOR THE ANALYSIS OF STEADY-STATE HEAT TRANSFER

The element-free Galerkin method is employed for two-dimensional analysis of steady-state heat transfer. The unknown response of the system, i.e. temperature is approximated using the moving least squares technique. Numerical integration of governing simultaneous system of equations is performed by Gauss quadrature and new modified nodal integration techniques. Numerical examples and tests have...

متن کامل

Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method

Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1997